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Abstract

The derivation of a liquid fraction correction equation for macrosegregation computations entirely on a matrix level

is presented. The method is implemented in the software package CrysVUn. The performance of the method is com-

pared to an enthalpy based correction scheme for a solidification benchmark problem.
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1. Introduction

Numerical solution of alloy solidification processes

requires the coupled solution of heat-, momentum-,

mass- and species transfer. One particular task is the

coupled solution of the energy and the species conser-

vation equation(s) under the consideration of the phase

diagram. Additional difficulties arise due to the lack of

an explicit equation for the liquid fraction.

Thus, the formulation of suitable coupling schemes

has been extensively discussed in literature. An equation

for the liquid fraction correction based on the definition

of the enthalpy was proposed by Voller et al. [1]. Based

on the definition of the mixture concentration, an

equation for the liquid fraction is used by Beckermann

and Viskanta [2] in the case of local equilibrium, and by

Felicelli et al. for non-equilibrium solidification of bin-

ary [3,4] and multicomponent alloys [5,6]. A mixture

implicit, explicit algorithm was proposed by Swamina-

than and Voller [7]. Schneider and Beckermann [8] de-

rived an equation for the liquid fraction, by substitution
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of the discretized equations for the temperature, species

and the phase diagram relationship.

In this work, we present a liquid fraction correction

scheme based entirely on the matrix form of the gov-

erning equations.
2. Governing equations

The equations for columnar dendritic growth are

briefly summarized in the following. A detailed deriva-

tion of these equations can be found in [10]. All symbols

are explained in the appendix of this note.

The energy conservation equation in terms of the

temperature is obtained from the averaged enthalpy

conservation equation and reads

o

ot
ð½qcp�T Þ þ r � ð�lqlcp;lvlT Þ ¼ r � ðkrT Þ � qsL

o�l
ot

ð1Þ

whereby the mixture term on the LHS is defined as

½qcp� ¼ �sqscp;s þ �lqlcp;l ð2Þ

and the mixture conductivity is defined by

k ¼ �sks þ �lkl ð3Þ

The formulation of the species conservation equation

requires assumptions on the microsegregation behavior.
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Nomenclature

a matrix coefficient

Cl liquid concentration of a chemical species,

wt.pct.

cp specific heat, J/kgK

D diagonal matrix or mass diffusion coeffi-

cient, m2/s

E matrix, resulting from the discretization of

the energy equation

e matrix coefficient

i index

j index

k index

L latent heat of phase change, J/kg

m liquidus line slope, K/wt.pct.

n iteration counter

ND off-diagonal matrix

rhsE vector, resulting from the discretization of

the energy equation

rhsS vector, resulting from the discretization of

the species equation

S matrix, resulting from the discretization of

the species equation

T temperature, K

Tpure pure substance melting point, K

t time, s

vl velocity, m/s

Greek/cal./symbols

CORR liquid fraction correction matrix

a under-relaxation factor

D discretized volume or time step

d Kronecker symbol or correction

�l;s liquid/solid fraction, �l ¼ 1� �s
f back diffusion parameter

j partition coefficient, wt.pct./wt.pct.

kl;s liquid/solid thermal conductivity, W/Km

ql;s liquid/solid mass density, kg/m3

E diagonal matrix

P phase diagram relation

� preliminary value
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The two classical limiting cases are given by Scheil’s

relation (non-equilibrium treatment) and the lever rule

(equilibrium treatment). The species conservation

equation in terms of the liquid concentration reads

o

ot
ðql�lCl þ fqs�sjClÞ � ð1� fÞqsjCl

o�l
ot

þr � ð�lqlClvlÞ

¼ r � ðD�lqlrClÞ þ Clðql � qsjÞ
o�s
ot

ð4Þ

whereby the parameter 06 f6 1 lies between the limits

of zero back diffusion ðf ¼ 0Þ and complete back diffu-

sion ðf ¼ 1Þ. For a discussion of this parameter, see the

recent publication of Voller [11].

A closure relation is provided by the phase diagram,

which correlates the temperature and the liquid con-

centration and reads for a binary system

T ¼ Tpure þ mCl ð5Þ
3. The correction scheme

Starting point of a numerical solution of Eqs. (1), (4)

and (5) is the transformation of the governing equations

in an algebraic system. Adopting a fully implicit dis-

cretization technique, the energy equation Eq. (1) can

be expressed as

Eð�lÞT ¼ rhsEð�lÞ � E � ð�l � �oldl Þ ð6Þ
whereby �oldl denotes the value of the liquid fraction at

the old time step, the other variables T and �l are eval-

uated at the new time step. The matrix E contains the

contributions of the transient-, convective- and diffusive

terms of Eq. (1) and the diagonal matrix E on the RHS

is correlated with the evolution of latent heat due to

phase change

ðEÞi;j ¼ qsL
DVi
Dt

di;j ð7Þ

The matrix equation for the liquid concentration can

be written analogous as

Sð�lÞCl ¼ rhsSð�lÞ ð8Þ

and the constraint of the phase diagram Eq. (5) can be

summarized as

T ¼ PðClÞ ð9Þ

The form of the equations above indicate, that the

temperature and the concentration can be obtained from

Eq. (6) and (8), respectively, whereas no direct equation

for the liquid fraction �l is available. This situation

reminds to the numerical solution of the well-known

Navier Stokes equations, where the value of the pressure

is also only indirectly specified via the constraint of the

continuity equation [9,12,13].

As the matrix coefficients themselves do also depend

on the unknown value of the liquid fraction (e.g. due to

the mixture conductivity Eq. (3)) the solution algorithm
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requires some sort of iterations. Starting from an initial

value (guessed or the value from the old time step) for

the liquid fraction ��l , preliminary solutions for the

temperature T � and the concentration C�
l are obtained.

Nevertheless, these solutions (denoted by an asterisk) do

normally not satisfy the constraint of the phase diagram

T � 6¼ PðC�
l Þ ð10Þ

This fact is not astonishing, as the phase diagram

relation Eq. (9) has not been considered so far in the

solution procedure.

To obtain solutions that fulfill the phase diagram

constraint Eq. (9), we introduce corrections for the

temperature dT

T ¼ T � þ dT ð11Þ

and the concentration dCl, respectively,

Cl ¼ C�
l þ dCl ð12Þ

Substitution of Eqs. (11) and (12) in Eq. (9) yields a

correlation of the temperature and the concentration

correction

T � þ dT ¼ PðC�
l þ dClÞ ð13Þ

The only degree of freedom to fulfill Eq. (13), is to

change the value of the liquid fraction

�l ¼ ��l þ d�l ð14Þ

The correlations between the correction d�l of the

liquid fraction and the corrections of the temperature dT
and the concentration dCl are derived in the following.

An equation, correlating the temperature correction

with the liquid fraction correction, can be derived by

substracting the energy equation Eq. (6) defined with the

preliminary (asterisk) values

Eð��l ÞT � ¼ rhsEð��l Þ � E � ð��l � �oldl Þ ð15Þ

from the final energy equation, which gives

Ed�l ¼ rhsEð�lÞ � rhsEð��l Þ þ Eð��l ÞT � � Eð�lÞT ð16Þ

The equation is non-linear in the liquid fraction, due

to the dependency of the matrix coefficients on the liquid

fraction. Progress is made after linearization of the terms

rhsEð�lÞ and Eð�lÞ, reading

Ed�l ¼ rhsEð��l Þ þ
orhsE

o�l
d�l � rhsEð��l Þ þ Eð��l ÞT �

� Eð��l Þ
�

þ oE

o�l
� d�l

� ��
T ð17Þ

whereby a coefficient in the second matrix within para-

thesis on the RHS is given by

ei;j ¼
X
k

oai;j
o�l;k

d�l;k ð18Þ
After re-arrangement and substitution of Eq. (11) we

arrive at

orhsE

o�l

 
� oE

o�l

� �y

� T �ð
"

þ dT Þ
#
� E

!
d�l ¼ Eð��l ÞdT

ð19Þ

whereby the underscored term is neglected in the fol-

lowing, because it is of second order in the corrections

and thus becomes zero more rapidly than the other

terms. Note that the second matrix on the LHS is a

short-hand notation for

eyi;j ¼
X
j

oai;j
o�l;i

T �
j ð20Þ

Eq. (19) relates the correction dT of the temperature

to the correction d�l of the liquid fraction.

A corresponding equation, which relates the correc-

tion of the species dCl to the correction d�l of the liquid

fraction, is derived following the same lines and reads

orhsS

o�l

 
� oS

o�l

� �y

� C�
l

�"
þ dCl

�#!
d�l ¼ Sð��l ÞdCl

ð21Þ

The underscored term is neglected again, for the

same reasons as already discussed in the case of the

temperature correction Eq. (19).

It can be concluded so far, that we obtained an

expression for the nodal temperature correction in terms

of the liquid fraction correction, which is formally

expressed as

dT ¼ deT þ E�1
D ð��l Þ

orhsE

o�l

 
� oE

o�l

� �y

� T �

" #
� E

!
d�l

ð22Þ
with

deT ¼ �E�1
D ð��l ÞENDð��l ÞdT ð23Þ

as well as for the nodal concentration correction in

terms of the liquid fraction correction, which is formally

expressed as

dCl ¼ deC l þ S�1
D ð��l Þ

orhsS

o�l

 
� oS

o�l

� �y

� C�
l

" #!
d�l

ð24Þ
with

deC l ¼ �S�1
D ð��l ÞSNDð��l ÞdCl ð25Þ

The values on the RHS for the temperature correc-

tion deT and the concentration correction deCl, which are

correlated with the off-diagonal terms of the corre-

sponding matrices, are unknown at this point and will

be therefore neglected in the following.
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The final step is the substitution of Eqs. (22) and (24)

into Eq. (13). This gives after re-arrangement the cor-

rection equation for the liquid fraction
CORR � d�l ¼ T � � ðTpure þ mC�
l Þ ð26Þ
whereby
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Fig. 1. Liquid fraction vs. temperature in the case of no mac-

rosegregation. Shown are the numerical results (symbols)

compared to the analytical solutions (lines) for the microscopic

limits of no- ðf ¼ 0Þ and infinite ðf ¼ 1Þ diffusion.
CORR ¼ E�1
D ð��l Þ

oE

o�l

� �y

� T �

" # 
þ E� orhsE

o�l

!

� mS�1
D ð��l Þ

oS

o�l

� �y

� C�
l

" # 
� orhsS

o�l

!
ð27Þ

Eqs. (26) and (27) are the central equations of the

matrix based correction scheme. The deviation of the

preliminary values from the phase diagram, expressed

on the RHS of Eq. (26), acts as the driving force for the

liquid fraction correction. In the case of a converged

solution, the correction is zero.

On setting CORR ¼ E�1
D ð��l Þ � E and taking only into

account the transient term of Eq. (6) in the matrix ED,

the liquid fraction correction reduces to the correction

equation of the enthalpy based algorithm [1], which

reads for a constant density

d�l ¼
cp
L
ðT � � ðTpure þ m � C�

l ÞÞ ð28Þ

Eqs. (26) or (28) may be used in a phase diagram

coupling algorithm. Starting with the initial guesses

T n�1, Cn�1
l and �n�1

l , a simple coupling algorithm is given

by [7]

Step 1 solve energy Eq. (15) ! T �

Step 2 solve species Eq. (8) ! C�
l

Step 3 correct liquid fraction with Eq. (26) or (28) ! �nl
Usually a post-correction step is applied afterwards,

reading

Step 4 correct species concentration with Eq. (8) ! Cn
l

Step 5 correct temperature inside the mushy zone with

Eq. (9) ! T n

These steps are repeated until some convergence

criteria are reached. In this work we use the norm of the

residuum of Eq. (15) and the relative change of the

liquid fraction k�nl � �n�1
l k=k�n�1

l k. As usual, an under-

relaxation factor a�l for the liquid fraction correction in

step 3 is used.

The coupling scheme is implemented in the software

package CrysVUn which is especially designed for the

global modeling of solidification processes [14]. For the

discretization of the governing equations, the finite

volume technique is applied in conjunction with

unstructured meshes.
4. Test case

The solidification benchmark published by Ahmad

et al. [15] is chosen to investigate the efficiency of the

different correction schemes. The test problem considers

directional solidification of a Sn–5%Pb alloy in a two-

dimensional rectangular area. For more details the

reader is referred to the original literature.

For the validation of the coupling algorithm, calcu-

lations were first performed without macrosegregation

(by setting the viscosity to an arbitrary high value). As

can be seen from Fig. 1, the computed temperature

liquid fraction relations agree well with the analytical

relations for both microscopic limits [16].

The test computations are performed on a grid with

approximately 1700 degrees of freedom for each scalar

value, the time step is set to dt ¼ 0:05 s. A homogeneous

temperature field slightly above the liquidus temperature

and a zero velocity field are set as initial values. The

simulations are stopped after 400 s. Here, nearly the

complete computational domain is in the semi-solid

state. As convergence criteria within a time step, the

norm of the residuum of Eq. (15) is required to be

smaller than 5 · 10�7, the relative change of the liquid

fraction is required to be smaller than 1 · 10�7. To

evaluate the coupling methods, the total number of

iterations within the coupling algorithm is recorded

during the computations.

The results using the under-relaxation values a�l ¼
0:55 for both correction schemes are shown in Fig. 2.

Here, the matrix based scheme clearly gives the best

performance. The average number of required iterations

per time step is 5.4, whereas for the enthalpy based

scheme, 9.3 iterations per time step are needed in the

average.
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Nevertheless, the convergence of the coupling schemes

is strongly dependent on the under-relaxation parameters

used in the calculations. As shown in Fig. 2, the iterations

required with the enthalpy based algorithm reduce to the

number of iterations needed with matrix based algorithm

by using higher values for a�l . In contrast, using higher

under-relaxation factors in the case of Eq. (26) lead to

divergence of the computations. In the case of the

enthalpy based scheme divergence was resulting using

under-relaxation factors higher than a�l ¼ 0:9.
5. Summary

The derivation of a liquid fraction correction equation

is presented, which is based on the matrix form of the

discretized equations governing alloy solidification. The

equation may be interpreted as an extension of the en-

thalpy based solution concept [1]. Test computations

showed, that the performance of the matrix based scheme

can be superior to the enthalpy based method. However,

using different numerical parameters the enthalpy based

approach results in the same performance. As the imple-

mentation of the latter method is much simpler, it can be

concluded that the effort of the implementation of the

matrix based scheme is not obligatory. Nevertheless,

the efficiency may also vary case by case, dependent on

the problem under consideration.
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